Ontogenetic shifts in trait-mediated mechanisms of plant community assembly.
نویسندگان
چکیده
Identifying the processes that maintain highly diverse plant communities remains a central goal in ecology. Species variation in growth and survival rates across ontogeny, represented by tree size classes and life history stage-specific niche partitioning, are potentially important mechanisms for promoting forest diversity. However, the role of ontogeny in mediating competitive dynamics and promoting functional diversity is not well understood, particular in high-diversity systems such as tropical forests. The interaction between interspecific functional trait variation and ontogenetic shifts in competitive dynamics may yield insights into the ecophysiological mechanisms promoting community diversity. We investigated how functional trait (seed size, maximum height, SLA, leaf N, and wood density) associations with growth, survival, and response to competing neighbors differ among seedlings and two size classes of trees in a subtropical rain forest in Puerto Rico. We used a hierarchical Bayes model of diameter growth and survival to infer trait relationships with ontogenetic change in competitive dynamics. Traits were more strongly associated with average growth and survival than with neighborhood interactions, and were highly consistent across ontogeny for most traits. The associations between trait values and tree responses to crowding by neighbors showed significant shifts as trees grew. Large trees exhibited greater growth as the difference in species trait values among neighbors increased, suggesting trait-associated niche partitioning was important for the largest size class. Our results identify potential axes of niche partitioning and performance-equalizing functional trade-offs across ontogeny, promoting species coexistence in this diverse forest community.
منابع مشابه
Shifts in Plant Community Assembly Processes across Growth Forms along a Habitat Severity Gradient: A Test of the Plant Functional Trait Approach
Species respond to changes in their environments. A core goal in ecology is to understand the process of plant community assembly in response to a changing climate. Examining the performance of functional traits and trait-based assembly patterns across species among different growth forms is a useful way to explore the assembly process. In this study, we constructed a habitat severity gradient ...
متن کاملPredation and associational refuge drive ontogenetic niche shifts in an arctiid caterpillar.
Despite the ubiquity of ontogenetic niche shifts, their drivers and consequences are poorly understood. Different nutritional requirements and stage-specific physiological limitations have often been offered as explanations for these life history features, but emerging work has demonstrated that top-down factors may also be important. We studied the roles of predation and associational refuge i...
متن کاملMultiple mechanisms of early plant community assembly with stochasticity driving the process.
Initial plant establishment is one of the most critical phases in ecosystem development, where an early suite of physical (environmental filtering), biological (seed limitation, species interactions) and stochastic factors may affect successional trajectories and rates. While functional traits are commonly used to study processes that influence plant community assembly in late successional comm...
متن کاملExploring the evolutionary ecology of fungal endophytes in agricultural systems: using functional traits to reveal mechanisms in community processes
All plants, including crop species, harbor a community of fungal endophyte species, yet we know little about the biotic factors that are important in endophyte community assembly. We suggest that the most direct route to understanding the mechanisms underlying community assembly is through the study of functional trait variation in the host and its fungal consortium. We review studies on crop e...
متن کاملDisturbance and resource availability act differently on the same suite of plant traits: revisiting assembly hypotheses.
Understanding the mechanisms of trait selection at the scale of plant communities is a crucial step toward predicting community assembly. Although it is commonly assumed that disturbance and resource availability constrain separate suites of traits, representing the regenerative and established phases, respectively, a quantification and test of this accepted hypothesis is still lacking due to l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Ecology
دوره 96 8 شماره
صفحات -
تاریخ انتشار 2015